Search This Blog

What errors may occur during CNC machining and CNC machining​?

 CNC machining and numerical control machining are a method to control the movement of machine tools and the production process of machining through computer digitization and information digitization. It is an intelligent numerical control device developed as an economical, high-speed, reliable, multi-functional, intelligent, and open structure. CNC machining is also an important indicator that can measure the continuous level and comprehensive ability of a safety technology, as well as the degree of modernization of related science and technology capabilities, especially in aviation, biology, medical and other high-tech cultural industries, and it is also a powerful indicator. reflect. So, what errors may occur during CNC machining and CNC machining? Let us understand together:   The use of approximate machining motion or approximate tool contours causes errors in the CNC principle of machining. The reason why it is called machining principle error is because of the error in machining

TI TPS65266RHBR

# TPS65266RHBR TI TPS65266RHBR New Switching Voltage Regulators 2.7Vto6.5V InputV3A 2A/2A Output Cur Syn , TPS65266RHBR pictures, TPS65266RHBR price, #TPS65266RHBR supplier ------------------------------------------------------------------- Email: [email protected] https://www.slw-ele.com/tps65266rhbr.html ------------------------------------------------------------------- Manufacturer: Texas Instrument s  Product Category: Switching Voltage Regulator s  RoHS:  Details   Mounting Style: SMD/SMT  Package / Case: VQFN -32  Output Voltage: Adjustable  Output Current: 2 A, 3 A  Number of Outputs: 3 Output  Input Voltage MAX: 6.5 V  Topology: Buck  Input Voltage MIN: 2.7 V  Switching Frequency : 1 MHz  Minimum Operating Temperature: - 40 C  Maxim um Operating Temperature: + 85 C  Series: TPS65266  Packaging: Cut Tape  Packaging: MouseReel  Packaging: Reel Switching Voltage Regulators 2.7Vto6.5V InputV3A 2A/2A Output Cur Syn

What are the rules for metal stamping die scrap tube?

The Purpose Standardize the management of the scrapping of the company's metal stamping dies, prevent the loss of company assets, and formulate this system specially. Scope of application It is suitable for the management of the company's scrap molds. Definition If the molds listed in the assets of the company fall under one of the following circumstances, the use management department may apply for scrapping. 1. Molds that exceed the specified service life. 2. The mold is severely damaged by accidents or accidents, and molds that cannot be repaired or have no repair value. 3. Metal stamping dies that have not reached the service life, but due to safety, quality, efficiency and other issues, the repair still fails to meet the minimum requirements of the customer's product process or affects the production safety and efficiency. 4. Product customers have stopped placing orders or have not placed orders for molds in several years. 4. Responsibilities 1. Responsibilities of th

Processing of cylindrical gear parts with 40Cr straight teeth

This gear is a standard spur gear with modulus m = 3.5 mm, number of teeth z = 63, tooth angle a = 20 & ordm. Since it is a gear of an aircraft steam turbine, its processing accuracy is required to be high.

Forged blanks are chosen because steam turbine gears require a hard tooth surface and a sturdy tooth center. 40Cr is used.

(1) Main technical requirements

  • 1) The accuracy level is set to the first acceptable group with 6 levels of accuracy and the detected item pitch cumulative error ΔFp. The second permissible group is level 5 accuracy, detection item tooth profile error Δff and base section deviation Δfpb. The third acceptable group is level 5 accuracy, which is the tooth orientation error ΔFβ for the detected item. The tooth thickness deviation Wk is measured by measuring the length of the normal. Tooth thickness deviation code M, tooth thickness deviation code P. (In the accuracy level display, the deviation of the tooth thickness limit is used to control the backlash, which is indicated by the code MP).
  • 2) The reference depth of the blank reference plane is the accuracy of IT6. There is a requirement for circular runout of the end face with the inner hole shaft at both ends.
  • 3) Surface roughness Ra The reference hole was 0.8 μm, both end faces were 1.6 μm, the tooth surface was 0.8 μm, and the tooth tip cylindrical surface was 3.2 μm.

(2) Forged blanks are selected to improve the mechanical properties of the material.

Free forging is used for low volume production and mold forging is used for mass production.

(3) The choice of the main surface treatment method for gears has a higher level of accuracy.

The main surface finishing methods are as follows.

  • Reference hole: Grinding
  • End face: Grinding
  • Tooth surface: Hobbing-Surface quenching-Grinding
  • General process for machining aircraft turbine spur gears:Document number for process card product type parts and components

Product name Gear part name Total page

Number Process Content Equipment Quantity Measurement Time Quota Remarks

  • 1, cutting machine 1
  • 2, rough car end face, inner hole and chamfered vertical car
  • 3, blank inspection non-destructive flaw detector
  • 4, rough car mouth, outer chamfer and surface lathe
  • 5, heat treatment (tempering) box furnace
  • 6, fine car inner holes and end face lathe
  • 7. Excavation: Vertical excavation
  • 8. Large end face grinding: surface grinding machine
  • 9, Reaming: Drilling machine
  • 10, pull key: slot broach tool
  • 11. Intermediate inspection: caliper and angle ruler
  • 12. Make a factory standard: Bench Bench
  • 13, rough hobbing: hobbing
  • 14. Fine hobbing: Hobbing
  • 15. Tooth tip treatment: Milling machine
  • 16. Cleaning: Cleaning machine
  • 17. Mid-term test
  • 18, heat treatment (surface hardening): box furnace
  • 19. Finely grind inner holes: inner grinding machine
  • 20, cleaning: cleaning machine
  • 21. Mid-term test
  • 22, Matching: Inspection machine
  • 23, Grinding: Grinding machine
  • 24, Cleaning: Cleaning machine
  • 25, Matching: Inspection machine
  • 26. Write the pairing number
  • 27, Cleaning: Cleaning machine
  • 28. Final test

Design calibration approval

The gearing process generally goes through the following steps: blanking heat treatment, tooth blanking, tooth profile processing, tooth edge machining, tooth surface heat treatment, precision benchmark correction and tooth profile finishing, etc.
The first stage of Cnc Machining is the first stage in which the blank is first machined. Since the transmission accuracy of the gear is mainly determined by the tooth profile accuracy and the uniformity of the tooth pitch distribution, this is directly related to the accuracy of the positioning reference (hole and end face) used when cutting the tooth. Therefore, this stage is mainly to prepare the detailed criteria for processing the tooth shape of the next stage, and the accuracy of the inner hole and the end face of the tooth basically meets the specified technical requirements. In addition to machining the benchmark at this stage, the treatment of small surfaces other than tooth contours should be done as late as possible at this stage.

The second step is the machining of the gear tooth shape.

For gears that do not require quenching, this stage is usually the final machining stage of the gear. After this stage, gears that fully meet the requirements of the drawing must be machined. For gears that require hardening, the precision of the tooth profile required to meet the final finish of the tooth profile must be machined at this stage, so machining at this stage is important to ensure the machining accuracy of the gear. It is a stage.

Particular attention is required.

Tooth tip treatment:

  • A) Inverted circle
  • B) Inverted tip
  • C) Chamfer

The cnc machining method of the gear end of the gear is as follows. There are four methods: inverted circle, inverted point, chamfered edge, and deburring. Chamfering, chamfering, and gear after chamfering. It is easy to engage when moving along the axis. Chamfering the tooth surface is the most widely used. Figure 2 shows the chamfering principle of a finger milling cutter. When rounded, the gear rotates slowly and the finger cutter reciprocates linearly along the gear axis while rotating at high speed. Each time the gear rotates one tooth, the milling cutter reciprocates once and the two ends move relative to complete the rounding of the tooth ends. Before tooth quenching, it is necessary to adjust the treatment of the tooth edges.

The third stage of processing is the heat treatment stage. At this stage, the quenching process of the tooth surface is mainly performed to achieve the specific hardness requirements of the tooth surface.

The final stage of machining is the finishing stage of the tooth profile.

The purpose of this stage is to correct the deformation of the tooth profile caused by gear quenching, further improve the accuracy of the tooth profile, reduce the surface roughness and achieve the final accuracy requirement. At this stage, the positioning reference (holes and end faces) is trimmed first, and after quenching, the holes and end faces inside the gear are deformed. If the hole shape is directly finished using such a hole and the end face after quenching, it is difficult to achieve the accuracy of the gear. The toothed finish by positioning the trimmed reference plane ensures accurate and reliable positioning and a relatively uniform balance distribution to achieve the finishing objectives. It is usually necessary to prepare the tooth tip treatment after hobbing (inserting) the tooth and before quenching the tooth.

The base hole of the gear will be deformed after quenching. The base holes need to be modified to ensure the quality of the tooth profile.

Cylindrical hole gear modifications can be used for push holes or grinding holes, which are highly productive and are often used for uncured gears. Grinding accuracy is high, but productivity is low. For gears with high internal hardness and high hardness after quenching, or gears with large inner diameter and thin thickness, it is recommended to use grinding holes.

When grinding a hole, the gear index circle is usually centered, so the radial runout of the gearing after grinding the hole is small, which is beneficial for later grinding or honing. To increase productivity, some factories have achieved good results by replacing the grinding holes with diamond boring.

Keywords: gear parts processing, 40Cr gear, turbine gear, gear grinding, tooth edge processing, tooth edge inverted circle, gear quenching

Link to this article:Processing of cylindrical gear parts with 40Cr straight teeth

Reprint Statement: If there are no special instructions, all articles on this site are original. Please indicate the source for reprinting.:Cnc Machining,Thank

Contact Us


Get In Touch or Get A Quote

Need an expert? you are more than welcomed to
leave your contact info and we will be in touch shortly
YOUR COMPANY
Sifangyuan Industrial Park, Xinshapu, Huaide Community
Humen town, Dongguan City, Guangdong Province. 
860769-82886112
860769-82886112