Search This Blog

Working principle of slow wire processing

 Slow wire walking, also called low-speed wire walking, is a kind of CNC machining machine tool that uses continuously moving fine metal wire as an electrode to pulse spark discharge on the workpiece to generate a high temperature of over 6000 degrees, ablate metal and cut into a workpiece. The principle of wire processing is the phenomenon that there is a gap between the wire electrode and the workpiece, and the metal is removed by continuous discharge. Since the slow-moving wire cutting machine adopts the method of wire electrode continuous feeding, that is, the wire electrode is processed during the movement, so even if the wire electrode is worn out, it can be continuously supplemented, so it can improve the machining accuracy of the parts and slow the wire. The surface roughness of the workpiece processed by the cutting machine can usually reach Ra=0.8μm and above, and the roundness error, linear error and dimensional error of the slow-moving wire cutting machine are much better t

Hydrostatic guideway of CNC machining lathe

The static pressure slide rail (TTW guide) of the CNC machining lathe transfers the oil with a certain pressure through the throttle to the oil cavity between the sliding surfaces of the slide rail (TTW guide) to form a pressure oil film to float the moving parts , Make the sliding rail (TTW guide) surface in a pure liquid friction state.   CNC machining General CNC machining usually refers to computer digital control precision machining, CNC machining lathe, CNC machining milling machine, CNC machining c17200   beryllium   copper   and milling machine, etc. The feed route of finishing is basically carried out along the part contour sequence. Therefore, the focus of determining the feed route is to determine the feed route of rough machining and idle stroke. In the numerical control processing, the control system issues instructions to make the tool perform various motions that meet the requirements, and the shape and size of the workpiece are expressed in the form of numbers and lette

Classification of CNC Machining Occupation Levels

1. Blue-collar layer:   That is, CNC machining operation technicians, proficient in machining and CNC machining process knowledge, proficient in the operation and manual programming of CNC machine tools (attributes: automated machine tools), understand automatic programming and simple maintenance of CNC machine tools (attributes: automated machine tools), such There is a large market demand for personnel, and they are suitable for operating workers of CNC machine tools (attributes: automated machine tools) in the workshop, but due to their single knowledge, their wages will not be much higher.   2. Gray collar layer:   One, CNC machining programmer:   Master the knowledge of 5 Axis CNC machining Aluminum   technology and the operation of CNC machine tools (attributes: automated machine tools), be familiar with the design and manufacturing expertise of complex molds (title: mother of industry), and be proficient in 3D CAD/CAM software, such as UG, GOOGLE PRO/E, etc. ; Familiar with CNC

Used for intelligent fault-tolerant semi-physical simulation experiment of engine control system

 

Construction and debugging of semi-physical closed-loop control system. This paper first established a component-level real-time model of a certain type of turboshaft engine, and then used this real-time model to form a closed-loop system on a mechanical hydraulic fuel regulation system. This experiment was carried out on the turboshaft engine semi-physical simulation experiment platform of 608 Institute. The experimental device is shown in Figure 2. The engine digital simulator is equipped with a real-time component-level model of a turboshaft engine. According to the position of the load rod (given by the potentiometer outside the experimental device) and the fuel flow rate Gfu, the gas generator speed N and power turbine speed are calculated from the model. N. The static pressure P and N at the outlet of the compressor are sent to the control cabinet through the AD channel output speed signal to drive the motor 1 and the motor 2 respectively; and the output pressure P electrical signal is converted into a pressure signal through electrical conversion, and the pressure signal after passing through the voltage divider The pressure is P′ and is sent to the fuel control system. The automatic fuel controller controls the N speed to maintain a constant speed by reflecting the fuel-air ratio G’. Since the numerical control system of the turboshaft engine is still under development, this experiment uses a hydraulic-mechanical fuel control system instead.

This article first conducted an open-loop acceleration and deceleration test. After a preliminary assessment of the system’s work, the closed loop can be cut into the closed loop only by making the fuel flow at the starting point approximately the same. During the closed-loop experiment, the strong fuel oscillation was caused when the load rod was pushed, so that the system could not work normally. After analyzing the experimental results, the following methods were adopted: (1) Increase the resistance of the fuel regulator: semi-physical simulation research on the intelligent fault tolerance technology of the engine numerical control system, reduce the magnification; (2) increase the interrupt timing program, and Simplify the real-time graphical interface, all curves and digital quantities are displayed in the simplest way, and the interface is convenient and friendly. *The problem of fuel oscillation has been solved afterwards. It should be noted that the same oscillation phenomenon occurred during the bench test of this system together with the engine, which was also solved by increasing the damping and reducing the magnification. The results of the semi-physical simulation experiment of the engine control system show that the results of the semi-physical simulation experiment are consistent with the bench test phenomenon of the turboshaft engine. The system can be used in the intelligent fault-tolerant semi-physical simulation experiment of the engine control system.

The automotive parts and parts machining, PTJ Shop offers the highest degree of OEM service with a basis of 10+ years experience serving the automotive industry. Our automotive precision shop and experts deliver confidence. We have perfected the art of producing large component volumes with complete JIT reliability, backed by the quality and long-term reliability our customers expect.

Link to this article:Used for intelligent fault-tolerant semi-physical simulation experiment of engine control system

Reprint Statement: If there are no special instructions, all articles on this site are original. Please indicate the source for reprinting.:Cnc Machining,Thank

Contact Us


Get In Touch or Get A Quote

Need an expert? you are more than welcomed to
leave your contact info and we will be in touch shortly
YOUR COMPANY
Sifangyuan Industrial Park, Xinshapu, Huaide Community
Humen town, Dongguan City, Guangdong Province. 
860769-82886112
860769-82886112