Search This Blog

What are the advantages of CNC machining of radiator parts?

For friends who have been in contact with the radiator component industry, they often see or hear "CNC machining", but too much exposure does not necessarily mean that many people understand. In fact, many questions are still about CNC machining. What are the advantages? Let's take a closer look. CNC machining is an index-controlled machine tool machining, which is a method of using digital information to control the machining process. Traditional mechanical processing is done manually by machine tools. During processing, the mechanical cutter is shaken to cut metal, and the accuracy is measured with calipers and other tools. However, traditional artificial intelligence processing is far from being able to meet the needs of production development. Therefore, the emergence of CNC machining provides the possibility for the standardization, precision and efficiency of mechanical product processing. The CNC machining process in the radiator component industry also shines. The

Investment Casting Materials and Manufacturing Process

Mold material The performance of the molding material should not only ensure the convenient production of investment molds with accurate dimensions and high surface finish, good strength and light weight, but also create conditions for the manufacture of mold shells and good castings. Molding materials are generally formulated with waxes, natural resins and plastics (synthetic resins). All mold materials mainly prepared with wax materials are called wax-based mold materials, and their melting point is low, 60~70 ° C; all mold materials mainly prepared with natural resins are called resin-based mold materials, with a slightly higher melting point, about 70 °C. ~120℃. invest-casting.com   Precision Investment Castings China prototype company service include :  High Quality Investment Casting Parts Custom , Lost Wax Investment Casting Sand Casting , Lost Foam Casting , Gravity Casting , Die Casting , Graphite Casting , Casting Moldsmanufacturers . Manufacture of Folding Investments In t

How Do Cnc Swiss Machines Work

How Do Cnc Swiss Machines Work Save 0 What Is Swiss Machine –The full name of the walking CNC lathe, it can also be called the spindle box mobile CNC automatic lathe, the economical turning and milling compound machine tool or the slitting lathe. It belongs to precision machining equipment, which can complete compound  machining such as turning, milling, drilling, boring, tapping, and engraving at one time. It is mainly used for batch  machining of precision hardware and special-shaped shafts. This machine tool first originated in Germany and Switzerland. In the early stage, it was mainly used for precision machining of military equipment. With the continuous development and expansion of industrialization, due to the urgent needs of the market, it was gradually applied to the  machining of civilian products; the development of similar machine tools in Japan and South Korea Earlier than China, it was mainly used in the military industry in the early days. After the war, it was gradually

Calculation of cutting edge size of stamping die

Working part cutting edge size calculation
1.1.1 Calculation of cutting edge size of blanking concave punch die
The shape of the part is a relatively simple square, suitable for separate machining. The feature of the separate processing is that it is necessary to compare the conditions of [δd + δp] ≤ Zmax-Zmin.

After the cutting edges of the blanking die wear, only the size of the blades changes and all of them increase. The cutting edge size is generally calculated according to Equation 5-7.
AA = (Amax-x △) 0 + δd (Equation 5-7)

After the cutting edge of the blanking die wears, the edge size changes only once and everything becomes smaller. The cutting edge size is usually calculated according to Equation 5-8.
BA = (Bmin + x △) δp0 (Equation 5-8)

Amax-Maximum distance at the end of the mold perpendicular to the feed direction.
Bmin-Minimum distance between punch edges perpendicular to the feed direction.
x –Concavo-convex mold wear factor.
△ –Blade manufacturing tolerance.
1) Calculate the convex and concave cutting edge sizes
The base size is 30-0.1 + 0.1 and R5 is converted to R50-0.22 at IT13 level. Checklist 5-4
x1 = 1; X2 = 0.5
Δp1 = -0.017; δd1 = 0.025; δp2 = -0.012; δd2 = 0.017;

Check: 1 —- │ δp1 │ + │ δd1 │ = 0.042mm <2x (Zmax-Zmin);

2 —- │ δp2 │ + │ δd2 │ = 0.029mm <2x (Zmax-Zmin);

Both satisfy the conditions of │ δp │ + │ δd │ ≤ 2x (Zmax-Zmin) n.

1—– 30-0.1 + 0.1

Dd1 = (30.1-0.2 × 1) 0δd1 = 29.90 + 0.025 (mm)

D p1 = (30.1-0.2 × 1-0.246×2) δp10 = 29.408-0.0170 (mm)
Convert Dd1, D p1 to integer size:

Dd1 = 29.9-0.020 Dd2 = 29.410-0.02
2——R50-0.22
Dd1 = (5-0.5 × 0.22) 0δd1 = 4.890 + 0.017 (mm)
D p1 = (5-0.5 × 0.22-0.246×2) δp10 = 4.398-0.0120 (mm)
Convert Dd2, Dp2 to integer size:

Dd2 = 4.89 + 0.0200 D p1 = 4.400-0.01

2) Calculation of the cutting edge size of the punching punch
The accuracy of the parts is not high, it is IT13 grade, the base size of the hole is Φ400-0.039, and it is necessary to take a larger gap because the service life of the mold needs to be considered when determining the edge clearance. I have. The results are as follows.
Zmax = 0.360mm Zmin = 0.246mm δp = -0.014 ; δd = 0.02;
So Z = Zmin = 0.246mm

Check: 1 —- │ δp │ + │ δd │ = 0.034mm <2x (Zmax-Zmin);

Cutting edge size of punching punch dP = (Bmin + x △) δp0

After that, dP = (9.961 + 05×0.039) -0.0140 = 9.98-0.0140

Cutting edge size of punching punch dd = (Bmin + x △ + Zminx2) 0δd

After that, dd = (9.961 + 05×0.039 + 0.236×2) = 10.470.02

Convert it to integer size: dP = 9.98-0.0140 dd = 10.4700.02

Link to this article:Calculation of cutting edge size of stamping die

Reprint Statement: If there are no special instructions, all articles on this site are original. Please indicate the source for reprinting.:Cnc Machining,Thank

Contact Us


Get In Touch or Get A Quote

Need an expert? you are more than welcomed to
leave your contact info and we will be in touch shortly
YOUR COMPANY
Sifangyuan Industrial Park, Xinshapu, Huaide Community
Humen town, Dongguan City, Guangdong Province. 
860769-82886112
860769-82886112