Search This Blog

Working principle of slow wire processing

 Slow wire walking, also called low-speed wire walking, is a kind of CNC machining machine tool that uses continuously moving fine metal wire as an electrode to pulse spark discharge on the workpiece to generate a high temperature of over 6000 degrees, ablate metal and cut into a workpiece. The principle of wire processing is the phenomenon that there is a gap between the wire electrode and the workpiece, and the metal is removed by continuous discharge. Since the slow-moving wire cutting machine adopts the method of wire electrode continuous feeding, that is, the wire electrode is processed during the movement, so even if the wire electrode is worn out, it can be continuously supplemented, so it can improve the machining accuracy of the parts and slow the wire. The surface roughness of the workpiece processed by the cutting machine can usually reach Ra=0.8μm and above, and the roundness error, linear error and dimensional error of the slow-moving wire cutting machine are much better t

Hydrostatic guideway of CNC machining lathe

The static pressure slide rail (TTW guide) of the CNC machining lathe transfers the oil with a certain pressure through the throttle to the oil cavity between the sliding surfaces of the slide rail (TTW guide) to form a pressure oil film to float the moving parts , Make the sliding rail (TTW guide) surface in a pure liquid friction state.   CNC machining General CNC machining usually refers to computer digital control precision machining, CNC machining lathe, CNC machining milling machine, CNC machining c17200   beryllium   copper   and milling machine, etc. The feed route of finishing is basically carried out along the part contour sequence. Therefore, the focus of determining the feed route is to determine the feed route of rough machining and idle stroke. In the numerical control processing, the control system issues instructions to make the tool perform various motions that meet the requirements, and the shape and size of the workpiece are expressed in the form of numbers and lette

Classification of CNC Machining Occupation Levels

1. Blue-collar layer:   That is, CNC machining operation technicians, proficient in machining and CNC machining process knowledge, proficient in the operation and manual programming of CNC machine tools (attributes: automated machine tools), understand automatic programming and simple maintenance of CNC machine tools (attributes: automated machine tools), such There is a large market demand for personnel, and they are suitable for operating workers of CNC machine tools (attributes: automated machine tools) in the workshop, but due to their single knowledge, their wages will not be much higher.   2. Gray collar layer:   One, CNC machining programmer:   Master the knowledge of 5 Axis CNC machining Aluminum   technology and the operation of CNC machine tools (attributes: automated machine tools), be familiar with the design and manufacturing expertise of complex molds (title: mother of industry), and be proficient in 3D CAD/CAM software, such as UG, GOOGLE PRO/E, etc. ; Familiar with CNC

Hall Sensor

The Hall effect is the working principle of the Hall sensor. It is a kind of electromagnetic effect, in which an orthogonal current and magnetic field are applied to the Semiconductor. The carriers in the Semiconductor are subjected to the Lorentz force and deflected. In different directions Gathering, thereby generating an electric field. There is a built-in voltage, this voltage is the Hall voltage, the greater the magnetic field strength, the greater the Hall voltage.

Hall Sensor
Hall sensor

The working principle of the linear Hall sensor, the output of the linear Hall sensor is an electrical signal proportional to the measured magnetic field strength. For example, the linear Hall sensor 3503 has three pins which are positive VS, V out and GND. Among them The positive VS is connected to a power supply of 4.5 to 6V. Power is supplied to the 3503, and the GND is grounded. The shell of the 3503 can induce the magnetic field, and implements the magnetic field strength in the form of voltage output at the pin of V out. The next output diagram shows that the 3503 is good When the magnetic field strength is 0 Gauss, V out is equal to 2.5V. When the magnetic field strength changes by 1 Gauss, the output changes about 1.3 millivolts.
When the 3503 sensor measures the magnetic field, it needs to pass the magnetic field lines through its effective sensing element to be detected. The magnetic field lines pass through the Hall sensor. The stronger the magnetic field, the more magnetic field lines pass through the Hall sensor, and the weaker the magnetic field passes through. The fewer lines of magnetic force, the Hall sensor outputs a corresponding signal to indicate the strength of the magnetic field according to the number of magnetic lines that pass through.

Contact Us


Get In Touch or Get A Quote

Need an expert? you are more than welcomed to
leave your contact info and we will be in touch shortly
YOUR COMPANY
Sifangyuan Industrial Park, Xinshapu, Huaide Community
Humen town, Dongguan City, Guangdong Province. 
860769-82886112
860769-82886112