Search This Blog

Working principle of slow wire processing

 Slow wire walking, also called low-speed wire walking, is a kind of CNC machining machine tool that uses continuously moving fine metal wire as an electrode to pulse spark discharge on the workpiece to generate a high temperature of over 6000 degrees, ablate metal and cut into a workpiece. The principle of wire processing is the phenomenon that there is a gap between the wire electrode and the workpiece, and the metal is removed by continuous discharge. Since the slow-moving wire cutting machine adopts the method of wire electrode continuous feeding, that is, the wire electrode is processed during the movement, so even if the wire electrode is worn out, it can be continuously supplemented, so it can improve the machining accuracy of the parts and slow the wire. The surface roughness of the workpiece processed by the cutting machine can usually reach Ra=0.8μm and above, and the roundness error, linear error and dimensional error of the slow-moving wire cutting machine are much better t

Hydrostatic guideway of CNC machining lathe

The static pressure slide rail (TTW guide) of the CNC machining lathe transfers the oil with a certain pressure through the throttle to the oil cavity between the sliding surfaces of the slide rail (TTW guide) to form a pressure oil film to float the moving parts , Make the sliding rail (TTW guide) surface in a pure liquid friction state.   CNC machining General CNC machining usually refers to computer digital control precision machining, CNC machining lathe, CNC machining milling machine, CNC machining c17200   beryllium   copper   and milling machine, etc. The feed route of finishing is basically carried out along the part contour sequence. Therefore, the focus of determining the feed route is to determine the feed route of rough machining and idle stroke. In the numerical control processing, the control system issues instructions to make the tool perform various motions that meet the requirements, and the shape and size of the workpiece are expressed in the form of numbers and lette

Hydrostatic guideway of CNC machining lathe

The static pressure slide rail (TTW guide) of the CNC machining lathe transfers the oil with a certain pressure through the throttle to the oil cavity between the sliding surfaces of the slide rail (TTW guide) to form a pressure oil film to float the moving parts , Make the sliding rail (TTW guide) surface in a pure liquid friction state.   CNC machining General CNC machining usually refers to computer digital control precision machining, CNC machining lathe, CNC machining milling machine, CNC machining c17200   beryllium   copper   and milling machine, etc. The feed route of finishing is basically carried out along the part contour sequence. Therefore, the focus of determining the feed route is to determine the feed route of rough machining and idle stroke. In the numerical control processing, the control system issues instructions to make the tool perform various motions that meet the requirements, and the shape and size of the workpiece are expressed in the form of numbers and lette

KOVAR parts cold working manufacturing process

KOVAR parts are precision processed by CNC numerical control machine tools and used for electronic industry equipment; precision parts processing, swiss machining, CNC precision parts processing.



(1) Eliminate machining stress.

When Kovar undergoes plastic deformation during cold working, about 10% to 15% of the applied energy is converted into internal energy, which is commonly referred to as internal stress, so that the Kovar machining material structure is in an unstable state. Under this condition, it can be maintained for a long time without significant changes.

Once it is heated, a series of changes in structure and properties will occur, and the material structure tends to a stable state. This change in structure and properties, especially changes in the structure of the structure, is reflected on the sealing surface.

The tensile stress on the molybdenum group glass during high temperature sealing may cause the glass to produce small cracks and leak air.

(2) Eliminate work hardening.

In the process of cold working, cnc manufacturing and forming of Kovar parts, due to defects such as grain elongation and grain breakage in the internal material structure, crystal defects and dislocation density increase greatly. The smaller the distance between the dislocation and the dislocation, the greater the interference between each other, and the greater the distortion of the surrounding lattice.

Each dislocation line has a stress field, and the dislocation and dislocation pass through each The interaction of the stress field causes the hardness and elasticity of Kovar to increase, while the plasticity decreases, which is work hardening.

If the work hardening is not eliminated, the stress field of the interaction between dislocations and dislocations will be broken due to crystal recovery or recrystallization during high-temperature sealing, and the balance will be lost. This also affects the sealing of alloy machining and glass. Certain stress effects.

Contact Us


Get In Touch or Get A Quote

Need an expert? you are more than welcomed to
leave your contact info and we will be in touch shortly
YOUR COMPANY
Sifangyuan Industrial Park, Xinshapu, Huaide Community
Humen town, Dongguan City, Guangdong Province. 
860769-82886112
860769-82886112